Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protists

33Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

Short-term experiments were conducted to examine the response of the ciliate Tiarina fusus and the heterotrophic dinoflagellate Polykrikos kofoidii to 3 strains in the Alexandrium tamarense species complex, each with a different paralytic shellfish toxin (PST) content. Both protist species fed on all 3 Alexandrium strains, but significant mortality occurred within 24 h of initial exposure to high densities of each dinoflagellate isolate. Protist mortality was not related, however, to the PST content of the Alexandrium strains, indicating a different mechanism of toxicity. Exposure of T. fusus to cell-free culture filtrates or cell extracts did not cause significant ciliate mortality. In contrast, significant mortality occurred when ciliates were separated physically from a live Alexandrium sp. culture by a 10 μm nylon mesh, suggesting that the toxicity is dependent upon the viability of the Alexandrium spp. cells but does not require physical contact or ingestion. Addition of antioxidant compounds significantly increased the survival of both protist species when exposed to Alexandrium, suggesting that reactive oxygen species and/or the secondary compounds produced by ROS-induced lipid peroxidation are involved in the toxicity of Alexandrium spp. to ciliates and heterotrophic dinoflagellates. This mechanism of toxicity is previously unknown for Alexandrium spp. and may play an important role in bloom dynamics and toxin transfer within the food web. © Inter-Research 2012.

Cite

CITATION STYLE

APA

Flores, H. S., Wikfors, G. H., & Dam, H. G. (2012). Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protists. Aquatic Microbial Ecology, 66(2), 199–209. https://doi.org/10.3354/ame01570

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free