The optimization of a jet turbojet engine by PSO and searching algorithms

  • Niknamian S
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The turbojet engine operates on the ideal Brayton cycle (gas turbine) and consists of six main parts: diffusers, compressors, combustion chambers, turbines, afterburners and nozzles. Using computer code writing in MATLAB software environment, exergy analysis on all selected turbojet engine components, exergy analysis on J85-GE-21 turbojet engine for selective height of 1000-8000 meters above sea level at speeds of 200 m/s and temperatures of 10°C, 20°C and 40°C have been provided and then, according to the system functions, the system is optimized based on the PSO method. For the purpose of optimization, variables of Mach number, efficiency of the compressor, turbine, nozzle and compressor pressure ratio are considered in the range of 0.6 to 1.4, 0.8 to 0.95, 0.8 to 0.95 and 7 to 10, respectively. The highest exergy efficiency of different parts of the engine at sea level with an inlet air velocity of 200 m/s corresponds to a diffuser with 73.1%. Then, the nozzle and combustion chamber are respectively 68.6% and 51.5%. The lowest exergy efficiency is related to compressor with 4%. After that, the afterburner is ranked second with 11.6%. Also, the values of entropy produced and the efficiency of the second law before optimization were 1176.99 and 479 w/k respectively and the same values after optimization were 1129 and 51.4 w/k respectively which is identified. After the optimization process, the amount of entropy produced is reduced and the efficiency of the second law of thermodynamics has increased.

Cite

CITATION STYLE

APA

Niknamian, S. (2021). The optimization of a jet turbojet engine by PSO and searching algorithms. Journal of Applied Science, Engineering, Technology, and Education, 3(1), 7–11. https://doi.org/10.35877/454ri.asci3195

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free