Photoelectric characteristics of a large-area n-MoS2/p-Si heterojunction structure formed through sulfurization process

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Two-dimensional (2D) materials, such as molybdenum disulfide (MoS2) of the transition metal dichalcogenides family, are widely investigated because of their outstanding electrical and optical properties. However, not much of the 2D materials research completed to date has covered large-area structures comprised of high-quality heterojunction diodes. We fabricated a large-area n-MoS2 /p-Si heterojunction structure by sulfurization of MoOx film, which is thermally evaporated on p-type silicon substrate. The n-MoS2/p-Si structure possessed excellent diode characteristics such as ideality factor of 1.53 and rectification ratio in excess of 104. Photoresponsivity and detectivity of the diode showed up to 475 mA/W and 6.5 × 1011 Jones, respectively, in wavelength ranges from visible to near-infrared. The device appeared also the maximum external quantum efficiency of 72%. The rise and decay times of optical transient response were measured about 19.78 ms and 0.99 ms, respectively. These results suggest that the sulfurization process for large-area 2D heterojunction with MoS2 can be applicable to next-generation electronic and optoelectronic devices.

Cite

CITATION STYLE

APA

Kim, Y., Kim, T., & Kim, E. K. (2020, December 2). Photoelectric characteristics of a large-area n-MoS2/p-Si heterojunction structure formed through sulfurization process. Sensors (Switzerland). MDPI AG. https://doi.org/10.3390/s20247340

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free