Theoretical approaches for understanding the interplay between stress and chemical reactivity

27Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

Cite

CITATION STYLE

APA

Kochhar, G. S., Heverly-Coulson, G. S., & Mosey, N. J. (2015). Theoretical approaches for understanding the interplay between stress and chemical reactivity. In Topics in Current Chemistry (Vol. 369, pp. 37–96). Springer Verlag. https://doi.org/10.1007/128_2015_648

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free