Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California

130Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

We analyse fault zone trapped waves, generated by ∼500 small earthquakes, for high-resolution imaging of the subsurface structure of the Coyote Creek, Clark Valley and Buck Ridge branches of the San Jacinto fault zone near Anza, California. Based on a small number of selected trapped waves within this data set, a previous study concluded on the existence of a low-velocity waveguide that is continuous to a depth of 15-20 km. In contrast, our systematic analysis of the larger data set indicates a shallow trapping structure that extends only to a depth of 3-5 km. This is based on the following lines of evidence. (1) Earthquakes clearly outside these fault branches generate fault zone trapped waves that are recorded by stations within the fault zones. (2) A traveltime analysis of the difference between the direct S arrivals and trapped wave groups shows no systematic increase (moveout) with increasing hypocentral distance or event depth. Estimates based on the observed average moveout values indicate that the propagation distances within the low-velocity fault zone layers are 3-5 km. (3) Quantitative waveform inversions of trapped wave data indicate similar short propagation distances within the low-velocity fault zone layers. The results are compatible with recent inferences on shallow trapping structures along several other faults and rupture zones. The waveform inversions also indicate that the shallow trapping structures are offset to the northeast from the surface trace of each fault branch. This may result from a preferred propagation direction of large earthquake ruptures on the San Jacinto fault. © 2005 RAS.

Cite

CITATION STYLE

APA

Lewis, M. A., Peng, Z., Ben-Zion, Y., & Vernon, F. L. (2005). Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophysical Journal International, 162(3), 867–881. https://doi.org/10.1111/j.1365-246X.2005.02684.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free