Measuring the terminal heights of bolides to understand the atmospheric flight of large asteroidal fragments

8Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The extent of penetration into the Earth’s atmosphere of a meteoroid is defined by the point where its kinetic energy is no longer sufficient to produce luminosity. For most of the cases this is the point where the meteoroid disintegrates in the atmosphere due to ablation process and dynamic pressure during flight. However, some of these bodies have particular physical properties (bigger size, higher bulk strength, etc.) or favorable flight conditions (lower entry velocity or/and a convenient trajectory slope, etc.) that allow them to become a meteoritedropper and reach the ground. In both cases, we define the end of the luminous path of the trajectory as the terminal height or end height. Thus, the end point shows the amount of deceleration till the final braking. We thus assume that the ability of a fireball to produce meteorites is directly related to its terminal height. Previous studies have discussed the likely relationship between fireball atmospheric flight properties and the terminal height. Most of these studies require the knowledge of a set of properties and physical variables which cannot be determined with sufficient accuracy from ground-based observations. The recently validated dimensionless methodology offers a new approach to this problem. All the unknowns can be reduced to only two parameters which are easily derived from observations. Despite the calculation of the analytic solution of the equations of motion is not trivial, some simplifications are admitted. Here, we describe the best performance range and the errors associated with these simplifications. We discuss how terminal heights depend on two or three variables that are easily retrieved from the recordings, provided at least three trajectory (h, v) points. Additionally, we review the importance of terminal heights, and the way they have been estimated in previous studies. Finally we discuss a new approach for calculating terminal heights.

Cite

CITATION STYLE

APA

Moreno-Ibáñez, M., Gritsevich, M., & Trigo-Rodríguez, J. M. (2017). Measuring the terminal heights of bolides to understand the atmospheric flight of large asteroidal fragments. In Astrophysics and Space Science Proceedings (Vol. 46, pp. 129–151). Kluwer Academic Publishers. https://doi.org/10.1007/978-3-319-46179-3_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free