Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task

2Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Under natural viewing conditions, visual stimuli are often obscured by occluding surfaces. To aid object recognition, the visual system actively reconstructs the missing information, as exemplified in the classic Kanizsa illusion, a phenomenon termed “modal completion”. Single-cell recordings in monkeys have shown that neurons in early visual cortex respond to illusory contours, but it has proven difficult to measure the neural correlates of modal completion in humans. We used electroencephalography (EEG) to measure steady-state visual-evoked potentials (SSVEPs) from disks with quarter segments removed to induce an illusory shape (or rotated to eliminate the illusory square in control trials). Opposing pairs of inducers were tagged with one of two flicker frequencies (2.5 or 4 Hz). During stimulus presentations, participants performed an attention task at fixation that required them to judge the orientation of a briefly flashed central bar while ignoring congruent (same orientation) or incongruent (different orientation) flanker bars that appeared on or off the illusory surface. Importantly, the occurrence of any illusory shape was never task relevant. Frequency-based analyses revealed that SSVEP amplitudes were reliably enhanced for trials in which an illusory square appeared, relative to control trials, at 4, 5 and 8 Hz and at an intermodulation frequency of 13 Hz. Participants' reaction times in the flanker task were significantly slower for incongruent versus congruent trials, and this distractor interference effect occurred only in the presence of an illusory surface and not in the control condition. Our results reveal a robust neural correlate of modal completion in the human visual system and provide evidence that visual completion can affect attentional control processes as deployed in a flanker task.

Cite

CITATION STYLE

APA

Wittenhagen, L., & Mattingley, J. B. (2019). Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task. Cortex, 117, 217–227. https://doi.org/10.1016/j.cortex.2019.03.014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free