Encephalomyocarditis virus and Theilovirus are species in the Cardiovirus genus of the Picornaviridae family. For all cardioviruses, the viral polyprotein is initiated with a short Leader (L) protein unique to this genus. The nuclear magnetic resonance (NMR) structure of L E from encephalomyocarditis virus (EMCV) has been determined. The protein has an NH 2 -proximal CHCC zinc finger, a central linker, and a contiguous, highly acidic motif. The theiloviruses encode the same domains, with one or two additional, COOH-proximal domains, characteristic of the human Saffold viruses (SafV) and Theiler's murine encephalomyelitis viruses (TMEV), respectively. The expression of a cardiovirus L, in recombinant form, or during infection/transfection, triggers an extensive, cell-dependent, antihost phosphorylation cascade, targeting nucleoporins (Nups) that form the hydrophobic core of nuclear pore complexes (NPC). The consequent inhibition of active nucleocytoplasmic trafficking is potent and prevents the host from mounting an effective antiviral response. For this inhibition, the L proteins themselves must be phosphorylated. In cells (extracts or recombinant form), L E was shown to be phosphorylated at Thr 47 and Tyr 41 . The first reaction (Thr 47 ), catalyzed by casein kinase 2 (CK2), is an obligatory precedent to the second event (Tyr 41 ), catalyzed by spleen tyrosine kinase (Syk). Site mutations in L E , or kinase-specific inhibitors, prevented L E phosphorylation and subsequent Nup phosphorylation. Parallel experiments with L S (SafV-2) and L T (TMEV BeAn) proteins confirmed the general cardiovirus requirement for L phosphorylation, but CK2 was not the culpable kinase. It is likely that L S and L T are both activated by alternative kinases in different cell types, probably reactive within the Theilo-specific domains. IMPORTANCE An understanding of the diverse methods used by viruses to interfere with cellular processes is important because they can teach us how to control virus infections. This report shows how viruses in the same genus use different cellular enzymes to phosphorylate their proteins. If these processes are interfered with, the viruses are severely disabled.
CITATION STYLE
Basta, H. A., Bacot-Davis, V. R., Ciomperlik, J. J., & Palmenberg, A. C. (2014). Encephalomyocarditis Virus Leader Is Phosphorylated by CK2 and Syk as a Requirement for Subsequent Phosphorylation of Cellular Nucleoporins. Journal of Virology, 88(4), 2219–2226. https://doi.org/10.1128/jvi.03150-13
Mendeley helps you to discover research relevant for your work.