Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life (t1/2 < 2 min) due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic reagent. We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic and β-cell trophic effects in type 2 diabetes db/db mice. In the present study, we examined supaglutide’s therapeutic efficacy and pharmacokinetics in diabetic rhesus monkeys. We found that a single subcutaneous injection of supaglutide of tested doses transiently and significantly reduced blood glucose levels in a dose-dependent fashion in the diabetic monkeys. During a 4-week intervention period, treatment of supaglutide of weekly dosing dose-dependently decreased fasting and random blood glucose levels. This was associated with significantly declined plasma fructosamine levels. The repeated administration of supaglutide remarkably also decreased body weight in a dose-dependent fashion accompanied by decreased food intake. Intravenous glucose tolerance test results showed that supaglutide improved glucose tolerance. The intervention also showed enhanced glucose-stimulated insulin secretion and improved lipid profile in diabetic rhesus monkeys. These results reveal that supaglutide exerts beneficial effects in regulating blood glucose and lipid homeostasis in diabetic rhesus monkeys.
CITATION STYLE
Cui, Q., Liao, Y., Jiang, Y., Huang, X., Tao, W., Zhou, Q., … Wang, Q. (2021). Novel GLP-1 analog supaglutide improves glucose homeostasis in diabetic monkeys. Journal of Endocrinology, 248(2), 145–154. https://doi.org/10.1530/JOE-20-0255
Mendeley helps you to discover research relevant for your work.