Evaluating security of voting schemes in the universal composability framework

49Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the literature, voting protocols are considered secure if they satisfy requirements such as privacy, accuracy, robustness, etc. It can be time consuming to evaluate a voting protocol with respect to all these requirements and it is not clear that the list of known requirements is complete. Perhaps because of this many papers on electronic voting do not offer any security proof at all. As a solution to this, we suggest evaluating voting schemes in the universal composability framework. We investigate the popular class of voting schemes based on homomorphic threshold encryption. It turns out that schemes in this class realize an ideal voting functionality that takes the votes as input and outputs the result. This ideal functionality corresponds closely to the well-known ballot box model used today in manual voting. Security properties such as privacy, accuracy and robustness now follow as easy corollaries. We note that some security requirements, for instance incoercibility, are not addressed by our solution. Security holds in the random oracle model against a non-adaptive adversary. We show with a concrete example that the schemes are not secure against adaptive adversaries. We proceed to sketch how to make them secure against adaptive adversaries in the erasure model with virtually no loss of efficiency. We also briefly hint at how to achieve security against adaptive adversaries in the erasure-free model. © Springer-Verlag Berlin Heidelberg 2004.

Cite

CITATION STYLE

APA

Groth, J. (2004). Evaluating security of voting schemes in the universal composability framework. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag. https://doi.org/10.1007/978-3-540-24852-1_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free