Physiological characteristics of inorganic C uptake were examined in Southern Ocean ice algae and phytoplankton assemblages. Ice algal and phytoplankton assemblages were largely dominated by diatoms and Phaeocystis antarctica, and showed a high capacity for HCO3- utilization, with direct HCO3- transport accounting for ~60% of total inorganic C uptake. Extracellular carbonic anhydrase (eCA) was detectable in all samples, but with significantly lower activity in sea ice algae. Neither HCO3- transport nor eCA activity was related to the in situ partial pressure of CO2 (pCO2) or taxonomic composition of samples. The half-saturation constant (KS) for inorganic C ranged from ~100 to 5000 μM, and showed significantly more variability among sea ice algae than phytoplankton assemblages. For the phytoplankton assemblages, there were significant positive correlations between in situ pCO2 and KS (higher C substrate affinity in low pCO2 waters), and also between KS and maximum C uptake rates (Vmax). In contrast, KS and Vmax in sea-ice algal assemblages were not correlated to each other, or to any other measured variables. The C isotope composition of particulate organic carbon δ13C-POC) in the phytoplankton assemblages showed modest variability (range -30 to -24.6‰) and was significantly correlated to the ratio of inferred growth rates (derived from Vmax) and in situ CO2 concentrations, but not to any measured C uptake parameters. δ13C-POC in sea ice algal samples (range -25.7 to -12.9‰) was significantly heavier than in the phytoplankton assemblages, and not correlated to any other variables. Our results provide evidence for the widespread occurrence of carbon-concentrating mechanisms in Southern Ocean sea ice algae and phytoplankton assemblages. © Inter-Research 2013.
CITATION STYLE
Tortell, P. D., Mills, M. M., Payne, C. D., Maldonado, M. T., Chierici, M., Fransson, A., … Arrigo, K. R. (2013). Inorganic C utilization and C isotope fractionation by pelagic and sea ice algal assemblages along the antarctic continental shelf. Marine Ecology Progress Series, 483, 47–66. https://doi.org/10.3354/meps10279
Mendeley helps you to discover research relevant for your work.