Observational signatures of massive black hole formation in the early Universe

25Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Space telescope observations of massive black holes during their formation may be key to understanding the origin of supermassive black holes and high-redshift quasars. To create diagnostics for their detection and confirmation, we study a simulation of a nascent massive ‘direct-collapse’ black hole that induces a wave of nearby massive metal-free star formation, unique to this seeding scenario and to very high redshifts. Here we describe a series of distinct colours and emission line strengths, dependent on the relative strength of star formation and black hole accretion. We predict that the forthcoming James Webb Space Telescope might be able to detect and distinguish a young galaxy that hosts a direct-collapse black hole in this configuration at redshift 15 with as little as a 20,000-second total exposure time across four filters, critical for constraining the seeding mechanisms and early growth rates of supermassive black holes. We also find that a massive seed black hole produces strong, H2-dissociating Lyman–Werner radiation.

Cite

CITATION STYLE

APA

Barrow, K. S. S., Aykutalp, A., & Wise, J. H. (2018). Observational signatures of massive black hole formation in the early Universe. Nature Astronomy, 2(12), 987–994. https://doi.org/10.1038/s41550-018-0569-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free