The crystal structures of Zea mays and arabidopsis 4-hydroxyphenylpyruvate dioxygenase

95Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The transformation of 4-hydroxyphenylpyruvate to homogentisate, catalyzed by 4-hydroxyphenylpyruvate dioxygenase (HPPD), plays an important role in degrading aromatic amino acids. As the reaction product homogentisate serves as aromatic precursor for prenylquinone synthesis in plants, the enzyme is an interesting target for herbicides. In this study we report the first x-ray structures of the plant HPPDs of Zea mays and Arabidopsis in their substrate-free form at 2.0 Å and 3.0 Å resolution, respectively. Previous biochemical characterizations have demonstrated that eukaryotic enzymes behave as homodimers in contrast to prokaryotic HPPDs, which are homotetramers. Plant and bacterial enzymes share the overall fold but use orthogonal surfaces for oligomerization. In addition, comparison of both structures provides direct evidence that the C-terminal helix gates substrate access to the active site around a nonheme ferrous iron center. In the Z. mays HPPD structure this helix packs into the active site, sequestering it completely from the solvent. In contrast, in the Arabidopsis structure this helix tilted by about 60° into the solvent and leaves the active site fully accessible. By elucidating the structure of plant HPPD enzymes we aim to provide a structural basis for the development of new herbicides.

Cite

CITATION STYLE

APA

Fritze, I. M., Linden, L., Freigang, J., Auerbach, G., Huber, R., & Steinbacher, S. (2004). The crystal structures of Zea mays and arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiology, 134(4), 1388–1400. https://doi.org/10.1104/pp.103.034082

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free