Motion switching and chaos of a particle in a generalized fermi-acceleration oscillator

22Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dynamic behaviors of a particle (or a bouncing ball) in a generalized Fermi-acceleration oscillator are investigated. The motion switching of a particle in the Fermi-oscillator causes the complexity and unpredictability of motion. Thus, the mechanism of motion switching of a particle in such a generalized Fermi-oscillator is studied through the theory of discontinuous dynamical systems, and the corresponding analytical conditions for the motion switching are developed. From solutions of linear systems in subdomains, four generic mappings are introduced, and mapping structures for periodic motions can be constructed. Thus, periodic motions in the Fermi-acceleration oscillator are predicted analytically, and the corresponding local stability and bifurcations are also discussed. From the analytical prediction, parameter maps of periodic and chaotic motions are achieved for a global view of motion behaviors in the Fermi-acceleration oscillator. Numerical simulations are carried out for illustrations of periodic and chaotic motions in such an oscillator. In existing results, motion switching in the Fermi-acceleration oscillator is not considered. The motion switching for many motion states of the Fermi-acceleration oscillator is presented for the first time. This methodology will provide a useful way to determine dynamical behaviors in the Fermi-acceleration oscillator.

Cite

CITATION STYLE

APA

Luo, A. C. J., & Guo, Y. (2009). Motion switching and chaos of a particle in a generalized fermi-acceleration oscillator. Mathematical Problems in Engineering, 2009. https://doi.org/10.1155/2009/298906

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free