The confinement of light and sound, while they are traveling in fibers, enables a variety of light-matter interactions. Therefore, it is natural to ask if fibers can also host capillary waves. Capillary waves are similar to those we see when throwing a stone into a puddle. Such capillary waves are prohibited in microfluidic devices where the liquid is bounded by solid walls. In contrast, we have fabricated fibers, which are made entirely from water and are suspended in air. The water fiber can therefore move, e.g. in a resonant mode that reassembles the motion of a guitar string. In our experiment, light guided through the water fiber allows optical interrogation of is capillary oscillations. Co-confining two important oscillations in nature: capillary and electromagnetic, might allow a new type of devices called Micro-Electro-Capillary-Systems [MECS]. The softness of MECS is a million times higher when compared to what the current solid-based technology permits, which accordingly improves MECS response to minute forces such as small changes in acceleration. Additionally, MECS might allow new ways to optically interrogate viscosity and surface tension, as well as their changes caused by introducing an analyte into the system.
CITATION STYLE
Douvidzon, M. L., Maayani, S., Martin, L. L., & Carmon, T. (2017). Light and Capillary Waves Propagation in Water Fibers. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16906-0
Mendeley helps you to discover research relevant for your work.