Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes

67Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Electrochemical capacitors (ECs), including electrical-double-layer capacitors and pseudocapacitors, feature high power densities but low energy densities. To improve the energy densities of ECs, redox electrolyte-enhanced ECs (R-ECs) or supercapbatteries are designed through employing confined soluble redox electrolytes and porous electrodes. In R-ECs the energy storage is based on diffusion-controlled faradaic processes of confined redox electrolytes at the surface of a porous electrode, which thus take the merits of high power densities of ECs and high energy densities of batteries. In the past few years, there has been great progress in the development of this energy storage technology, particularly in the design and synthesis of novel redox electrolytes and porous electrodes, as well as the configurations of new devices. Herein, a full-screen picture of the fundamentals and the state-of-art progress of R-ECs are given together with a discussion and outlines about the challenges and future perspectives of R-ECs. The strategies to improve the performance of R-ECs are highlighted from the aspects of their capacitances and capacitance retention, power densities, and energy densities. The insight into the philosophies behind these strategies will be favorable to promote the R-EC technology toward practical applications of supercapacitors in different fields.

Cite

CITATION STYLE

APA

Yang, N., Yu, S., Zhang, W., Cheng, H. M., Simon, P., & Jiang, X. (2022, August 1). Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes. Advanced Materials. John Wiley and Sons Inc. https://doi.org/10.1002/adma.202202380

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free