High-temperature performance of non-polar (11–20) InGaN quantum dots grown by a quasi-two-temperature method

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Non-polar (11–20) a-plane InGaN quantum dots (QDs) are one of the strongest candidates to achieve on-chip applications of polarised single photon sources, which require a minimum operation temperature of ∼200 K under thermoelectrically cooled conditions. In order to further improve the material quality and optical properties of a-plane InGaN QDs, a quasi-two-temperature (Q2T) method has been developed, producing much smoother underlying InGaN quantum well than the previous modified droplet epitaxy (MDE) method. In this work, we compare the emission features of QDs grown by these two methods at temperatures up to 200 K. Both fabrications methods are shown to be able to produce QDs emitting around the thermoelectric cooling barrier. The sample fabricated by the new Q2T method demonstrates more stable operation, with an order of magnitude higher intensity at 200 K comparing to the comparable QDs grown by MDE. A detailed discussion of the possible mechanisms that result in this advantage of slower thermal quenching is presented. The use of this alternative fabrication method hence promises more reliable operation at temperatures even higher than the thermoelectric cooling threshold, and facilitates the on-going development of high temperature polarised single photon sources based on a-plane InGaN QDs.

References Powered by Scopus

Quantum computation with quantum dots

6289Citations
N/AReaders
Get full text

Quantum-enhanced measurements: Beating the standard quantum limit

2427Citations
N/AReaders
Get full text

Photon antibunching in resonance fluorescence

1464Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots

33Citations
N/AReaders
Get full text

Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures

11Citations
N/AReaders
Get full text

Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot

6Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Wang, T., Puchtler, T. J., Zhu, T., Jarman, J. C., Oliver, R. A., & Taylor, R. A. (2017). High-temperature performance of non-polar (11–20) InGaN quantum dots grown by a quasi-two-temperature method. Physica Status Solidi (B) Basic Research, 254(8). https://doi.org/10.1002/pssb.201600724

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

78%

Professor / Associate Prof. 1

11%

Researcher 1

11%

Readers' Discipline

Tooltip

Physics and Astronomy 6

86%

Engineering 1

14%

Article Metrics

Tooltip
Mentions
References: 1

Save time finding and organizing research with Mendeley

Sign up for free