Bedrock Weathering Controls on Terrestrial Carbon-Nitrogen-Climate Interactions

9Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Anthropogenic nitrogen deposition is widely considered to increase CO2 sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen-carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid-1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2 capture than nitrogen deposition inputs since pre-industrial times. Climate change projections based on RCP 8.5 show that rock nitrogen inputs and biological nitrogen fixation contribute 2–5 times more to terrestrial carbon uptake than anthropogenic nitrogen deposition though year 2101. Future responses of rock N inputs on plant CO2 capture rates are more signficant at higher latitudes and in mountainous environments, where geological and climate factors promote higher rock weathering rates. The enhancement of plant CO2 uptake via rock nitrogen weathering partially resolves nitrogen-carbon discrepancies in Earth system models and offers an alternative explanation for lack of progressive nitrogen limitation in the terrestrial biosphere. We conclude that natural N inputs impart major control over terrestrial CO2 sequestration in Earth’s ecosystems.

Cite

CITATION STYLE

APA

Dass, P., Houlton, B. Z., Wang, Y., Wårlind, D., & Morford, S. (2021). Bedrock Weathering Controls on Terrestrial Carbon-Nitrogen-Climate Interactions. Global Biogeochemical Cycles, 35(10). https://doi.org/10.1029/2020GB006933

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free