Direct interorganellar transfer of iron from endosome to mitochondrion

228Citations
Citations of this article
156Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Iron is a transition metal whose physico-chemical properties make it the focus of vital biologic processes in virtually all living organisms. Among numerous roles, iron is essential for oxygen transport, cellular respiration, and DNA synthesis. Paradoxically, the same characteristics that biochemistry exploits make iron a potentially lethal substance. In the presence of oxygen, ferrous iron (Fe2+) will catalyze the production of toxic hydroxyl radicals from hydrogen peroxide. In addition, Fe3+ is virtually insoluble at physiologic pH. To protect tissues from deleterious effects of Fe, mammalian physiology has evolved specialized mechanisms for extracellular, intercellular, and intracellular iron handling. Here we show that developing erythroid cells, which are taking up vast amounts of Fe, deliver the metal directly from transferrin-containing endosomes to mitochondria (the site of heme biosynthesis), bypassing the oxygen-rich cytosol. Besides describing a new means of intracellular transport, our finding is important for developing therapies for patients with iron loading disorders. © 2007 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S., & Ponka, P. (2007). Direct interorganellar transfer of iron from endosome to mitochondrion. Blood, 110(1), 125–132. https://doi.org/10.1182/blood-2007-01-068148

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free