Effect of Sulfate Attack on the Expansion Behavior of Cement-Treated Aggregates

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The expansion induced by sulfate attack on cement-treated aggregates (SACA) is a well-known problem that can be solved. It causes obvious heaves in road bases and railway subgrades. In this paper, the effects of the sodium sulfate content, cement content, degree of compaction, sulfate types, attack types, aluminum ion supply, concentration of curing sulfate solution, and temperature on the expansion behavior induced by SACA were investigated over 60 days in the laboratory. Based on the Sobol sensitivity analysis method, the influence of the sensitivity of each factor on the expansion was quantitatively analyzed, and the dominant factor of expansion was proposed. Results show that sulfate content is the domain factor of expansion that is induced by SACA, and it presents a logarithmic function relationship with strain. The 0.5% sodium sulfate content is the minimum sulfate content which causes the expansion that is induced by SACA. When the sulfate content is less than 1%, the expansion induced by SACA is minor. When the sulfate content is between 1% and 3%, the expansion behavior is expressed in four stages as follows: rapid strain increase, followed by a short stagnation period, then a significant strain increase and, finally, constant strain. When the sulfate content is greater than 5%, there are two stages comprising the expansion behavior as follows: the rapid strain increases and constant strain occurs. Greater sulfate content, greater degree of compaction, and lower temperature have positive effects on the expansion induced by SACA. The cement content does not have a consistent effect on expansion behavior. Compared with a sodium sulfate attack, both the reaction rate and expansion of cement-treated aggregates that are attacked by gypsum are smaller, and the attack period is also longer. When the sulfate content is greater than 1%, the addition of kaolin promotes the progression of the expansion induced by SACA. A small amount of water is sufficient for the demand for the sulfate attack. When the sulfate content is at a certain level, the expansion induced by SACA that is under external attack is much smaller than the expansion that is under internal attack. This study is expected to serve as a reference for future research on the mechanics of SACA, and it attempts to provide theoretical support for amending expansions that are induced by SACA.

Cite

CITATION STYLE

APA

Wang, Q., Liu, J., Wang, P., Liu, J., & Sun, M. (2024). Effect of Sulfate Attack on the Expansion Behavior of Cement-Treated Aggregates. Materials, 17(3). https://doi.org/10.3390/ma17030660

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free