Background. Intravenous injection of mice with attenuated Plasmodium berghei sporozoites induces sterile immunity to challenge with viable sporozoites. Non-intravenous routes have been reported to yield poor immunity. Because intravenous immunization has been considered to be unacceptable for large scale vaccination of humans, assessment was made of the results of intradermal immunization of mice with Plasmodium yoelii, a rodent malaria parasite whose infectivity resembles that of human malaria. Methods. Mice were immunized with two injections of isolated, radiation-attenuated P. yoelii sporozoites, either by intravenous (IV) or intradermal (ID) inoculation. In an attempt to enhance protective immunogenicity of ID-injections, one group of experimental mice received topical application of an adjuvant, Imiquimod, while another group had their injections accompanied by local "tape- stripping" of the skin, a procedure known to disrupt the stratum corneum and activate local immunocytes. Challenge of immunized and non-immunized control mice was by bite of sporozoite-infected mosquitoes. Degree of protection among the various groups of mice was determined by microscopic examination of stained blood smears. Statistical significance of protection was determined by a one-way ANOVA followed by Tukey's post hoc test. Results. Two intravenous immunizations produced 94% protection to mosquito bite challenge; intradermal immunization produced 78% protection, while intradermal immunization accompanied by "tape-stripping" produced 94% protection. There were no statistically significant differences in degree of protective immunity between immunizations done by intravenous versus intradermal injection. Conclusions. The use of a sub-microlitre syringe for intradermal injections yielded excellent protective immunity. ID-immunization with large numbers of radiation-attenuated P. yoelii sporozoites led to levels of protective immunity comparable to those achieved by IV-immunization. It remains to be determined whether an adjuvant treatment can be found to substantially reduce the numbers of attenuated sporozoites required to achieve a strong protective immunity with as few doses as possible for possible extension to immunization of humans. © 2010 Voza et al; licensee BioMed Central Ltd.
CITATION STYLE
Voza, T., Kebaier, C., & Vanderberg, J. P. (2010). Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria Journal, 9(1). https://doi.org/10.1186/1475-2875-9-362
Mendeley helps you to discover research relevant for your work.