Certain D-amino acids, such as D-methionine and D-cystine, were incorporated into cells of Escherichia coli under conditions inhibiting protein and cell wall synthesis. Part of the radioactivity of D-14C-amino acids incorporated into the cells was found in the isolated cell wall peptidoglycan. A covalent linkage between the amino group of the D-amino acids and the peptidoglycan was presumed to be the main cause of the binding of the D-amino acids to peptidoglycan, because the amino group of the D-amino acids in the incorporation product was substituted. Whether the carboxyl terminus was substituted was unknown. The formation of the D-amino acid-peptidoglycan linkage was insensitive to β-lactam antibiotics such as benzylpenicillin and ampicillin (500 μg/ml) and therefore was not due to the reaction of DD-transpeptidation which is involved in the biosynthesis of peptidoglycan. The D-amino acids also strongly inhibited the formation of peptidoglycan-bound lipoprotein in the E. coli cells. The results may suggest the correlation between binding of D-amino acid to peptidoglycan and inhibition of formation of the bound form of lipoprotein.
CITATION STYLE
Tsuruoka, T., Tamura, A., Miyata, A., Takei, T., Iwamatsu, K., Inouye, S., & Matsuhashi, M. (1984). Penicillin-insensitive incorporation of D-amino acids into cell wall peptidoglycan influences the amount of bound lipoprotein in Escherichia coli. Journal of Bacteriology, 160(3), 889–894. https://doi.org/10.1128/jb.160.3.889-894.1984
Mendeley helps you to discover research relevant for your work.