Machine Learning-Based Models for Prediction of Critical Illness at Community, Paramedic, and Hospital Stages

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Overcrowding of emergency department (ED) has put a strain on national healthcare systems and adversely affected the clinical outcomes of critically ill patients. Early identification of critically ill patients prior to ED visits can help induce optimal patient flow and allocate medical resources effectively. This study aims to develop ML-based models for predicting critical illness in the community, paramedic, and hospital stages using Korean National Emergency Department Information System (NEDIS) data. Random forest and light gradient boosting machine (LightGBM) were applied to develop predictive models. The predictive model performance based on AUROC in community stage, paramedic stage, and hospital stage was estimated to be 0.870 (95% CI: 0.869-0.871), 0.897 (95% CI: 0.896-0.898), and 0.950 (95% CI: 0.949-0.950) in random forest and 0.877 (95% CI: 0.876-0.878), 0.899 (95% CI: 0.898-0.900), and 0.950 (95% CI: 0.950-0.951) in LightGBM, respectively. The ML models showed high performance in predicting critical illness using variables available at each stage, which can be helpful in guiding patients to appropriate hospitals according to their severity of illness. Furthermore, a simulation model can be developed for proper allocation of limited medical resources.

Cite

CITATION STYLE

APA

Lee, S., Park, H. J., Hwang, J., Lee, S. W., Han, K. S., Kim, W. Y., … Kim, S. J. (2023). Machine Learning-Based Models for Prediction of Critical Illness at Community, Paramedic, and Hospital Stages. Emergency Medicine International, 2023. https://doi.org/10.1155/2023/1221704

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free