Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin

37Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Probiotic Enterococcus strains of human origin were microencapsulated by spray drying using whey protein and maltodextrin as an encapsulating agent. The obtained encapsulates were characterized for stability, viability, and physiological properties. Results: The microcapsules were prepared from probiotic Enterococcus strains that were previously isolated from human vagina and infants’ meconium. The microcapsules revealed similar particle sizes and morphologies. The highest hygroscopicity was observed in the microcapsules produced with strain E. rivorum S22C (0.17 ± 1.15) g water/kg powder/min. E. canintestini S18A revealed highest dissolution time in water (703 ± 2 s). The DSC thermogram revealed excellent thermal stability of all microcapsules. The physicochemical and morphological characteristics of the microcapsules were acceptable with regard to residual water content, particle mean size, and thermophysical properties and storage stability under room temperature conditions, with a low inactivation rate of Enterococcus strains. All the microcapsules revealed the recommended count of probiotic cells, low moisture content with low water activity. Observation under a scanning electron microscope revealed spherical-shaped partially collapsed structures measuring between 9 and 14 μm with surface concavities. Conclusions: The microcapsule probiotic strains of Enterococcus microencapsulated by spray drying using whey protein and maltodextrin revealed properties of acceptable standards. These strains can have future potential as developing probiotic animal feed and food industry.

Cite

CITATION STYLE

APA

Bhagwat, A., Bhushette, P., & Annapure, U. S. (2020). Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef University Journal of Basic and Applied Sciences, 9(1). https://doi.org/10.1186/s43088-020-00061-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free