Beyond linear regression: mapping models in cognitive neuroscience should align with research goals

  • Ivanova A
  • Schrimpf M
  • Anzellotti S
  • et al.
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Many cognitive neuroscience studies use large feature sets to predict and interpret brain activity patterns. Feature sets take many forms, from human stimulus annotations to representations in deep neural networks. Of crucial importance in all these studies is the mapping model, which defines the space of possible relationships between features and neural data. Until recently, most encoding and decoding studies have used linear mapping models. Increasing availability of large datasets and computing resources has recently allowed some researchers to employ more flexible nonlinear mapping models; however, the question of whether nonlinear mapping models can yield meaningful scientific insights remains debated. Here, we discuss the choice of a mapping model in the context of three overarching desiderata: predictive accuracy, interpretability, and biological plausibility. We show that these desiderata do not map cleanly onto the linear/nonlinear divide; instead, each desideratum can refer to multiple research goals, each of which imposes its own constraints on the mapping model. Moreover, we argue that, instead of categorically treating the mapping models as linear or nonlinear, researchers should report the complexity of these models. We show that, in many cases, complexity provides a more accurate reflection of restrictions imposed by various research goals and outline several complexity metrics that can be used to effectively evaluate mapping models.

Cite

CITATION STYLE

APA

Ivanova, A. A., Schrimpf, M., Anzellotti, S., Zaslavsky, N., Fedorenko, E., & Isik, L. (2022). Beyond linear regression: mapping models in cognitive neuroscience should align with research goals. Neurons, Behavior, Data Analysis, and Theory, 1. https://doi.org/10.51628/001c.37507

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free