Collective dynamics of random Janus oscillator networks

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Janus oscillators have been recently introduced as a remarkably simple phase oscillator model that exhibits nontrivial dynamical patterns-such as chimeras, explosive transitions, and asymmetry-induced synchronization-that were once observed only in specifically tailored models. Here we study ensembles of Janus oscillators coupled on large homogeneous and heterogeneous networks. By virtue of the Ott-Antonsen reduction scheme, we find that the rich dynamics of Janus oscillators persists in the thermodynamic limit of random regular, Erdos-Rényi, and scale-free random networks. We uncover for all these networks the coexistence between partially synchronized states and a multitude of solutions of a collective state we denominate as a breathing standing wave, which displays global oscillations. Furthermore, abrupt transitions of the global and local order parameters are observed for all topologies considered. Interestingly, only for scale-free networks, it is found that states displaying global oscillations vanish in the thermodynamic limit.

Cite

CITATION STYLE

APA

Peron, T., Eroglu, D., Rodrigues, F. A., & Moreno, Y. (2020). Collective dynamics of random Janus oscillator networks. Physical Review Research, 2(1). https://doi.org/10.1103/PhysRevResearch.2.013255

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free