The main task of the energy system is to supply the consumers with high-quality electric and heat energy. As possibilities for accumulation of the energy and especially electrical energy in Estonia are very limited, one of the main energy parameters is its uninterrupted supply. The needs of consumers are characterized by the demand curve - the variation of load for a given time period (day, month, year). It is necessary to stress the difference between load and demand curves for the producer and consumer. Up to the recent time the producer load curve consisted of the individual consumers' demand curves sum plus losses in the distribution elements (in electric networks). Nowadays when by economical and ecological reasons the renewable energy sources are more intensively used, the part of the energy producers using wind and solar energy is constantly rising, and they are increasingly influencing the work of the whole energy system. That complicates significantly the work of the high-powered electric energy generators (with large inertia) at power stations as, in addition to the load variations depending on demand, they have to compensate extremely stochastic production of wind turbines. In this paper the problem is discussed on the basis of load and demand curves of the Energy system of Estonia and Pakri wind farm. It is shown that these curves are not suitable for mutual compensation and that may disturb the stability of the energy system at the wind park maximum power. The result is that the Energy system dispatcher is forced to limit the production of the wind park.
CITATION STYLE
LEPA, J., ANNUK, A., KOKIN, E., Põder, V., & Jürjenson, K. (2009). ENERGY PRODUCTION AND CONSUMPTION CHARTS IN ENERGY SYSTEM. Oil Shale, 26(3), 309. https://doi.org/10.3176/oil.2009.3s.12
Mendeley helps you to discover research relevant for your work.