Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium

108Citations
Citations of this article
173Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium inside a hyper-mesophilic (that is, between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified Β-oxidation to H2/CO2 and acetate. These intermediates are converted to CH4/CO2 by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to CO2/H2 and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H 2-producing syntroph-methanogen partnership that may serve to improve community stability.

Cite

CITATION STYLE

APA

Lykidis, A., Chen, C. L., Tringe, S. G., McHardy, A. C., Copeland, A., Kyrpides, N. C., … Liu, W. T. (2011). Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME Journal, 5(1), 122–130. https://doi.org/10.1038/ismej.2010.125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free