Learning to interpret topographic maps: Understanding layered spatial information

34Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Abstract: Novices struggle to interpret maps that show information about continuous dimensions (typically latitude and longitude) layered with information that is inherently continuous but segmented categorically. An example is a topographic map, used in earth science disciplines as well as by hikers, emergency rescue operations, and other endeavors requiring knowledge of terrain. Successful comprehension requires understanding that continuous elevation information is categorically encoded using contour lines, as well as skill in visualizing the three-dimensional shape of the terrain from the contour lines. In Experiment 1, we investigated whether novices would benefit from pointing and tracing gestures that focus attention on contour lines and/or from three-dimensional shape gestures used in conjunction with three-dimensional models. Pointing and tracing facilitated understanding relative to text-only instruction as well as no instruction comparison groups, but shape gestures only helped understanding relative to the no instruction comparison group. Directing attention to the contour lines may help both in code breaking (seeing how the lines encode elevation) and in shape inference (seeing how the overall configuration of lines encodes shape). In Experiment 2, we varied the language paired with pointing and tracing gestures; key phrases focused either on elevation information or on visualizing shape. Participants did better on items regarding elevation when language highlighted elevation and better on items requiring shape when language highlighted shape. Thus, focusing attention using pointing and tracing gestures on contour lines may establish the foundation on which language can build to support learning.

Cite

CITATION STYLE

APA

Atit, K., Weisberg, S. M., Newcombe, N. S., & Shipley, T. F. (2016). Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 1(1). https://doi.org/10.1186/s41235-016-0002-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free