Improved algorithms for coloring random graphs

2Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Consider the problem of k-coloring random k-colorable graphs. The random graphs are drawn from the G(n,p,k) model. In this model, an adversary splits the vertices into k color classes each of size Ω(n), and then for each pair u,v of vertices belonging to different color classes, he includes the edge {u, v} with probability p. We give algorithms for coloring random graphs from G(n,p,k) with p ≥ n-l+ε where ε > 1/3 is any positive constant. The failure probability of our algorithms is exponentially low, i.e. e-n5 for some positive constant δ. This improves the previously known algorithms which have only polynomially low failure probability. We also show how the algorithms given by Blum and Spencer can be modified to have exponentially low failure probability provided some restrictions on edge probabilities are introduced. We introduce a technique for converting almost succeeding algorithms into algorithms with polynomial expected running time and which surely k-color the input random graph. Using these two results, we derive polynomial expected time algorithms for k-coloring random graphs from G(n,p,k) with p ≥ n -1+ε where ε is any constant greater than 0.4. Our results improve the previously known results.

Cite

CITATION STYLE

APA

Subramanian, C. R. (1994). Improved algorithms for coloring random graphs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 834 LNCS, pp. 460–468). Springer Verlag. https://doi.org/10.1007/3-540-58325-4_212

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free