Excessive rainfall is difficult to forecast, and there is a need for tools to aid Weather Prediction Center (WPC) forecasters when generating Excessive Rainfall Outlooks (EROs), which are issued for the contiguous United States at lead times of 1-3 days. To address this need, a probabilistic forecast system for excessive rainfall, known as the Colorado State University Machine Learning Probabilities (CSU-MLP) system, was developed based on ensemble reforecasts, precipi tation observations, and machine-learning algorithms, specifically random forests. The CSU-MLP forecasts were designed to emulate the EROs, with the goal being a tool that forecasters can use as a "first guess"in the ERO forecast process. Resulting from close collaboration between CSU and WPC and evaluation at the Flash Flood and Intense Rainfall Experiment, iterative improve ments were made to the forecast system and it was transitioned into operational use at WPC. Quantitative evaluation shows that the CSU-MLP forecasts are skillful and reliable, and they are now being used as a part of the WPC forecast process. This project represents an example of a successful research-to-operations transition, and highlights the potential for machine learning and other postprocessing techniques to improve operational predictions.
CITATION STYLE
Schumacher, R. S., Hill, A. J., Klein, M., Nelson, J. A., Erickson, M. J., Trojniak, S. M., & Herman, G. R. (2021). From Random Forests to Flood Forecasts ; A Research to Operations Success Story. Bulletin of the American Meteorological Society, 102(9), E1742–E1755. https://doi.org/10.1175/BAMS-D-20-0186.1
Mendeley helps you to discover research relevant for your work.