The distribution pattern and flux variation of POC in the continental shelf seas are essential for understanding the carbon cycle in marginal seas. The hydrodynamic environment and complicated estuarine processes in the East China Sea result in challenging estimates and substantial spatio-temporal variability in terms of POC concentrations. A hybrid retrieval model based on the mutual combination of the color index algorithm (CIPOC) and the empirical band ratio algorithm was applied in this study to effectively and dynamically monitor the surface POC concentration in the East China Sea in a long-term series for the first time using MODIS/Aqua remote sensing satellite data from 2003 to 2020. A hybrid retrieval model based on the mutual combination of the color index algorithm (CIPOC) and the empirical band ratio algorithm was applied in this study. The MODIS/Aqua remote sensing satellite data from 2003 to 2020 were employed for the first time to dynamically monitor the surface POC concentrations in the East China Sea for a long time series. The results demonstrated that the performance (R2 = 0.84, RMSE = 156.14 mg/m3, MAPE = 43.30%, bias = −64.79 mg/m3) exhibited by this hybrid retrieval algorithm confirms the usability of inversion studies of surface POC in the East China Sea. Different drivers such as river discharge, phytoplank-ton, wind, and the sea surface current field jointly influence the spatial and temporal distribution of POC concentrations in the East China Sea. This paper also verifies that the hybrid algorithm can be applied to retrieval tasks for POC in different seas with similar optical properties to the waters of the East China Sea. In conclusion, the long-term series East China Sea POC data record, which was established based on MODIS/Aqua, provides supplementary information for in-situ sampling, which will aid the long-term monitoring of POC fluxes in shelf seas. At the same time, it has also improved our understanding of the transport and spatio-temporal variability of POC in the East China Sea, enhancing our comprehension of the impact of POC on environmental changes and carbon cycling in marginal seas.
CITATION STYLE
Cai, S., Wu, M., & Le, C. (2022). Satellite Observation of the Long-Term Dynamics of Particulate Organic Carbon in the East China Sea Based on a Hybrid Algorithm. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133220
Mendeley helps you to discover research relevant for your work.