This in-depth paper studies the issue of energy-related CO2 emissions of China using sample data from 1980 to 2015. Due to the lack of official data, CO2 emissions are first calculated by the recommended IPCC method. It shows that CO2 emissions in China present an “S” type in shape. Then the Tapio decoupling index is applied to investigate the relationship between CO2 emissions and economic growth. This suggests that weak decoupling is the main state during the study period and the decoupling trend is M-shaped. Moreover, the study years are divided into decoupling years and re-link years according to the decoupling relationship, and the Relieffalgorithm is proposed to verify the feasibility of the classification and judge the influencing weights of different driving factors. The ascending order is: actual GDP, urbanization rate, industrial structure, population, energy structure, and electricity consumption. Finally, a hybrid model of grey neural network model (GNNM) based on grey model (GM) and BP neural network (BPNN) is established to forecast CO2 emissions. This demonstrates that the GNNM model has a better capacity for forecasting CO2 emissions and capturing the non-linear and non-stationary characteristics of CO2 emissions.
CITATION STYLE
Zhou, J., Guang, F., & Gao, Y. (2017). Prediction of CO2 emissions based on the analysis and classification of decoupling. Polish Journal of Environmental Studies, 26(6), 2851–2860. https://doi.org/10.15244/pjoes/71162
Mendeley helps you to discover research relevant for your work.