A Newly-Designed Wearable Robotic Hand Exoskeleton Controlled by EMG Signals and ROS Embedded Systems

7Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

One of the most difficult parts of stroke therapy is hand mobility recovery. Indeed, stroke is a serious medical disorder that can seriously impair hand and locomotor movement. To improve hand function in stroke patients, new medical technologies, such as various wearable devices and rehabilitation therapies, are being developed. In this study, a new design of electromyography (EMG)-controlled 3D-printed hand exoskeleton is presented. The exoskeleton was created to help stroke victims with their gripping abilities. Computer-aided design software was used to create the device’s 3D architecture, which was then printed using a polylactic acid filament. For online classifications, the performance of two classifiers—the support vector machine (SVM) and the K-near neighbor (KNN)—was compared. The Robot Operating System (ROS) connects all the various system nodes and generates the decision for the hand exoskeleton. The selected classifiers had high accuracy, reaching up to 98% for online classification performed with healthy subjects. These findings imply that the new wearable exoskeleton, which could be controlled in accordance with the subjects’ motion intentions, could aid in hand rehabilitation for a wider motion range and greater dexterity.

Cite

CITATION STYLE

APA

Abdallah, I. B., & Bouteraa, Y. (2023, August 1). A Newly-Designed Wearable Robotic Hand Exoskeleton Controlled by EMG Signals and ROS Embedded Systems. Robotics. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/robotics12040095

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free