The recent emergence of inducible expression systems for mammalian cells has greatly facilitated the in vivo analysis of gene function. The ecdysone-inducible expression system is particularly attractive because of (i) extremely low basal expression and high-level induced expression, (ii) the lack of pleiotropic effects caused by the inducer or activator, and (iii) the rapid penetrance and clearance of the inducer. Here, we describe an improved receptor expression vector. The required ecdysone receptor proteins (VgEcR and RXR) are co-expressed from a bicistronic cytomegalovirus (CMV) expression cassette in the vector pERV3. The CMV promoter in this vector can be readily replaced with a cell type-specific promoter of interest. Using the ecdysone analogs, muristerone A or ponasterone A, induction ratios of up to three orders of magnitude were attained in the transient transfection assays and in a cell line stably transformed with both pERV3 and an ecdysone-inducible reporter vector Fine control of luciferase expression was achieved by varying both the induction time and inducer concentration. Here, we describe a set of cell lines stably transformed with the vector pERV3, in which the ecdysone receptors are expressed at optimal levels for the high-level induction of gene expression.
CITATION STYLE
Wyborski, D. L., Bauer, J. C., & Vaillancourt, P. (2001). Bicistronic expression of ecdysone-inducible receptors in mammalian cells. BioTechniques. Eaton Publishing Company. https://doi.org/10.2144/01313pf02
Mendeley helps you to discover research relevant for your work.