Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa

66Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To protect the surface of the stomach, the epithelial cells secrete a mucus layer, which is mainly comprised of the MUC5AC mucin. Further protection is provided by a thick glycocalyx on the apical surface of the epithelial cell, with the cell surface mucin MUC1 as a major component. Here, we investigate the production rate and turnover of newly synthesized mucin in mice and analyze the effects of early colonization and chronic infection with H. pylori. Metabolic incorporation of an azido GalNAc analog (GalNAz) was used as a nonradioactive method to perform pulse experiments in the whole animal. First, the subcellular movement of newly synthesized mucin and mucin turnover was determined in uninfected mice. Based on the time line for mucin transport and dissemination, 2, 6, and 12 h after GalNAz injection was selected to collect the stomachs from mice infected with H. pylori strain SS1 during early colonization (7 days) and chronic infection (90 days). The results demonstrated that the speed from the start of glycosylation to the final destination is faster for the membrane-bound mucin to reach the glycocalyx (2 h) than for the secretory mucins to become secreted into the mucus layer (5 h). Furthermore, infection with H. pylori reduces the rate of mucin turnover and decreases the levels of Muc1. Since H. pylori colonizes this mucus niche, the decreased turnover rate indicates that H. pylori creates a more stable and favorable environment for itself by impairing the defense mechanism for clearing the mucosal surface of pathogens by mucus flow. © 2013, American Society for Microbiology.

Cite

CITATION STYLE

APA

Navabi, N., Johansson, M. E. V., Raghavan, S., & Lindéna, S. K. (2013). Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa. Infection and Immunity, 81(3), 829–837. https://doi.org/10.1128/IAI.01000-12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free