User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems

20Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.

Cite

CITATION STYLE

APA

Deng, Y., Zhang, W., Lam, W., Cheng, H., & Meng, H. (2022). User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems. In WWW 2022 - Proceedings of the ACM Web Conference 2022 (pp. 2998–3008). Association for Computing Machinery, Inc. https://doi.org/10.1145/3485447.3512020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free