Feasibility theory reconciles and informs alternative approaches to neuromuscular control

15Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

We present Feasibility Theory, a conceptual and computational framework to unify today’s theories of neuromuscular control. We begin by describing how the musculoskeletal anatomy of the limb, the need to control individual tendons, and the physics of a motor task uniquely specify the family of all valid muscle activations that accomplish it (its ‘feasible activation space’). For our example of producing static force with a finger driven by seven muscles, computational geometry characterizes—in a complete way—the structure of feasible activation spaces as 3-dimensional polytopes embedded in 7-D. The feasible activation space for a given task is the landscape where all neuromuscular learning, control, and performance must occur. This approach unifies current theories of neuromuscular control because the structure of feasible activation spaces can be separately approximated as either low-dimensional basis functions (synergies), high-dimensional joint probability distributions (Bayesian priors), or fitness landscapes (to optimize cost functions).

Cite

CITATION STYLE

APA

Cohn, B. A., Szedlák, M., Gärtner, B., & Valero-Cuevas, F. J. (2018). Feasibility theory reconciles and informs alternative approaches to neuromuscular control. Frontiers in Computational Neuroscience, 12. https://doi.org/10.3389/fncom.2018.00062

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free