Binding of Human Immunodeficiency Virus Type 1 to CD4 Induces Association of Lck and Raf-1 and Activates Raf-1 by a Ras-Independent Pathway

  • Popik W
  • Pitha P
72Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

We have analyzed CD4-mediated signaling during the early stages of human immunodeficiency virus type 1 (HIV-1) infection. Binding of purified HIV-1 virions or recombinant HIV-1 glycoprotein gp120 to CD4 receptors resulted in association and tyrosine phosphorylation and activation of tyrosine kinase Lck and serine/threonine kinase Raf-1. The association between Lck and Raf-1 was mediated by stimulation of the CD4 receptors, since it was abolished by preincubation of the virus with soluble CD4 and was not detected in CD4-negative A201 T cells. However, the Lck-Raf-1 association was restored in A201 cells permanently transfected with human CD4 cDNA and stimulated with anti-CD4 antibodies. In addition, a catalytically active Lck was required for the association of Lck and Raf-1. Surprisingly, the CD4-mediated signaling, induced by the HIV-1 binding, did not result in stimulation of the Ras GTP-binding activity or its association with Raf-1, indicating that the signaling pathway generated by the HIV-1 binding is not identical to the classical Ras/Raf-1 pathway. Furthermore, overexpression of activated Raf-1 in Jurkat T cells stimulated the HIV long terminal repeat promoter activity and significantly enhanced HIV-1 replication. This suggests that the Lck-Raf-1 pathway, rapidly stimulated by the binding of HIV-1 or gp120 to CD4 receptors, may play an essential role in the transcriptional activation of the integrated HIV-1 provirus as well as in its pathogenicity.

Cite

CITATION STYLE

APA

Popik, W., & Pitha, P. M. (1996). Binding of Human Immunodeficiency Virus Type 1 to CD4 Induces Association of Lck and Raf-1 and Activates Raf-1 by a Ras-Independent Pathway. Molecular and Cellular Biology, 16(11), 6532–6541. https://doi.org/10.1128/mcb.16.11.6532

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free