Synthesis and Characterization of New Solution-Processable Red Iridium (III) Complexes Based on a Phenylation Strategy

10Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The exploitation of high-performance solution-processable phosphorescence organic light-emitting diode (PhOLED) materials is of great significance for the realization of large-area, low-cost and flexible display. On the basis of our previous findings that the para-phenylation (phenyl or 4-methoxyphenyl, with respect to the C-Ir bond) on the cyclometalated ligand (C^N ligand) of bis[2-phenylbenzothiazolato-N,C2']iridium(III)(acetylacetonate) can result in compounds with drastically enhanced film amorphism hence much improved electroluminescence (EL) performance, herein, this para-phenylation strategy was applied to Ir(III) complexes bearing a molecular platform of orange-emissive bis[2-(6-diphenylamino)phenylbenzothiazolato-N,C2']iridium(III)(acetylacetonate)[(Nbt)2Ir(acac)] to afford two new Ir(III) complexes, namely (3PhNbt)2Ir(acac) and (3OMePhNbt)2Ir(acac). X-ray diffraction (XRD) characterization results revealed that both the two objective compounds possess much enhanced film amorphism than their parent compound (Nbt)2Ir(acac), validating the efficacy of this para-phenylation strategy in achieving Ir(III) complexes with enhanced film amorphism. Addi-tionally, in comparison with (Nbt)2Ir(acac), both (3PhNbt)2Ir(acac) and (3OMePhNbt)2Ir(acac) show much enhanced solubility in common organic solvents, together with 5~10 nm bathochromic-shifted phosphorescence band to red region. As a consequence, (3PhNbt)2Ir(acac) and (3OMePhNbt)2Ir(acac) were expected to be promising guest materials for the fabrication of high-performance solution-processed red PhOLEDs. EL characterization results indicated that for single-layer red solu-tion-processed PhOLEDs using (3PhNbt)2Ir(acac) and (3OMePhNbt)2Ir(acac) as the guest dopant, they show peak current efficiency of 2.4 cd·A-1 and 8.7 cd·A-1, maximum brightness of 1830 cd·m-2 and 6630 cd·m-2, and CIE coordinates of (0.61, 0.39) and (0.62, 0.38), respectively. In contrast, the contral device based on the orange-emissive (Nbt)2Ir(acac) only shows a peak current efficiency of 1.5 cd·A-1, maximum brightness of 1620 cd·m-2, and CIE coordinates of (0.59, 0.41). These results confirmed that para-phenyl modification on the C^N ligand (with respect to the C-Ir bond) is indeed an effective approach to acquiring high-performance solution-processable PhOLED Ir(III) complexes with simultaneously red-shifted emission band.

Cite

CITATION STYLE

APA

Chen, S., Dai, J., Zhou, K., Luo, Y., Su, S., Pu, X., … Lu, Z. (2017). Synthesis and Characterization of New Solution-Processable Red Iridium (III) Complexes Based on a Phenylation Strategy. Acta Chimica Sinica, 75(4), 367–374. https://doi.org/10.6023/A17010015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free