Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis

63Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T-DNA insertion mutant analysis to affect SA–JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA–JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.

Cite

CITATION STYLE

APA

Proietti, S., Caarls, L., Coolen, S., Van Pelt, J. A., Van Wees, S. C. M., & Pieterse, C. M. J. (2018). Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell and Environment, 41(10), 2342–2356. https://doi.org/10.1111/pce.13357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free