Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91-110 °C heated air), group II (148-175 °C heated air), group III (209-227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air.

Cite

CITATION STYLE

APA

Wan, J. B., Zhang, G. A., Qiu, Y. X., Wen, C. Q., & Fu, T. R. (2016). Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns. Scientific Reports, 6. https://doi.org/10.1038/srep28772

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free