This study investigated contrast summation over area for moving targets applied to a fixed-size contrast pedestal-a technique originally developed by Meese and Summers (2007) to demonstrate strong spatial summation of contrast for static patterns at suprathreshold contrast levels. Target contrast increments (drifting gratings) were applied to either the entire 20% contrast pedestal (a full fixed-size drifting grating), or in the configuration of a checkerboard pattern in which the target increment was applied to every alternate check region. These checked stimuli are known as ''Battenberg patterns'' and the sizes of the checks were varied (within a fixed overall area), across conditions, to measure summation behavior. Results showed that sensitivity to an increment covering the full pedestal was significantly higher than that for the Battenberg patterns (areal summation). Two observers showed strong summation across all check sizes (0.71°-3.33°), and for two other observers the summation ratio dropped to levels consistent with probability summation once check size reached 2.00°. Therefore, areal summation with moving targets does operate at high contrast, and is subserved by relatively large receptive fields covering a square area extending up to at least 3.33° × 3.33° for some observers. Previous studies in which the spatial structure of the pedestal and target covaried were unable to demonstrate spatial summation, potentially due to increasing amounts of suppression from gain-control mechanisms which increases as pedestal size increases. This study shows thatwhen this is controlled, by keeping the pedestal the same across all conditions, extensive summation can be demonstrated.
CITATION STYLE
McDougall, T. J., Dickinson, J. E., & Badcock, D. R. (2018). Suprathreshold contrast summation over area using drifting gratings. Journal of Vision, 18(4), 1–9. https://doi.org/10.1167/18.4.20
Mendeley helps you to discover research relevant for your work.