An asymmetric-top free radical CH2CN, which as a 2B1 ground state, was detected for the first time by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz, and many hyperfine resolved components for the N = 4-3 and 5-4 transitions in the 80 and 100 GHz regions, respectively. The molecular constants, including the rotational constants, centrifugal distortion constants, and spin-rotation coupling constants with centrifugal distortion correction terms were determined from the fine-structure resolved transitions, and the hyperfine coupling constants due to the hydrogen and nitrogen nuclei were obtained from the low-N transitions. As a result we assigned U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1, to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K-1 = 0 of the CH2CN radical.
CITATION STYLE
Saito, S., Yamamoto, S., Irvine, W. M., Ziurys, L. M., Suzuki, H., Ohishi, M., & Kaifu, N. (1988). Laboratory detection of a new interstellar free radical CH2CN(2B1). The Astrophysical Journal, 334, L113. https://doi.org/10.1086/185324
Mendeley helps you to discover research relevant for your work.