Serine palmitoyltransferase (SPT), the enzyme catalyzing the initial step in the biosynthesis of sphingolipids, comprises two different subunits, LCB1 and LCB2. LCB1 has a single highly hydrophobic domain near the N terminus. Chinese hamster ovary cell mutant LY-B cells are defective in SPT activity because of the lack of expression of an endogenous LCB1 subunit. Stable expression of LCB1 having an epitope tag at either the N or C terminus restored SPT activity of LY-B cells, suggesting that the epitope tag did not affect the localization or topology of LCB1. Indirect immunostaining showed that the N- and C-terminal epitopes are oriented toward the lumenal and cytosol side, respectively, at the endoplasmic reticulum. Interestingly, there was far less LCB2 in LY-B cells than in wild-type cells, and the amount of LCB2 in LY-B cells was restored to the wild-type level by transfection with LCB1 cDNA. In addition, overproduction of the LCB2 subunit required co-overproduction of the LCB1 subunit. These results indicated that the LCB1 subunit is most likely an integral protein having a single transmembrane domain with a lumenal orientation of its N terminus in the endoplasmic reticulum and that the LCB1 subunit is indispensable for the maintenance of the LCB2 subunit in mammalian cells.
CITATION STYLE
Yasuda, S., Nishijima, M., & Hanada, K. (2003). Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. Journal of Biological Chemistry, 278(6), 4176–4183. https://doi.org/10.1074/jbc.M209602200
Mendeley helps you to discover research relevant for your work.