Do ocean tidal signals influence recovery of solar quiet variations?

13Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The solar quiet (Sq) source morphology changes on a daily basis and becomes disturbed during periods of increased magnetic activity. Therefore, it may be preferable to use single-day magnetic field recordings for the analysis of Sq variations. However, in short recordings, Sq and ocean tidal magnetic signals are often indistinguishable because of the close periods. As a result, the tidal magnetic signals can be erroneously attributed to signals of Sq origin, which can potentially lead to wrong interpretations, especially when small signals, such as those induced by the 3-D heterogeneities in the mantle, are sought. In this work, we quantitatively estimate the effect of ocean tidal signals in daily variations by performing rigorous 3-D modeling and comparing the results with real measurements from ground and sea floor observatories. We found that the vertical magnetic field component, Z, is affected the most such that at some locations the tidal signals explain the majority of the observed daily variation. Further, horizontal tidal magnetic fields at the sea floor are larger in amplitude and exhibit different spatial structures compared to signals estimated at the sea level. We propose a scheme aimed at correcting data for the ocean tidal signals and show that such correction suppresses the tidal signals in the observed field variations.[Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Guzavina, M., Grayver, A., & Kuvshinov, A. (2018). Do ocean tidal signals influence recovery of solar quiet variations? Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-017-0769-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free