Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells

58Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Using in vitro oxygen-glucose deprivation (OGD) model, we have previously demonstrated that 2-h OGD induces rapid, caveolin-1-mediated dissociation of claudin-5 from the cellular cytoskeletal framework and quick endothelial barrier disruption. In this study, we further investigated the fate of translocated claudin-5 and the mechanisms by which OGD promotes caveolin-1 translocation. Exposure of bEND3 cells to 4-h OGD, but not 2-h OGD plus 2-h reoxygenation, resulted in claudin-5 degradation. Inhibition of autophagy or the fusion of autophagosome with lysosome, but not proteasome, blocked OGD-induced claudin-5 degradation. Moreover, knockdown of caveolin-1 with siRNA blocked OGD-induced claudin-5 degradation. Western blot analysis showed a transient colocalization of caveolin-1, claudin-5, and LC3B in autolysosome or lipid raft fractions at 2-h OGD. Of note, inhibiting autophagosome and lysosome fusion sustained the colocalization of caveolin-1, claudin-5, and LC3B throughout the 4-h OGD exposure. EPR spin trapping showed increased nitric oxide (NO) generation in 2-h OGD-treated cells, and inhibiting NO with its scavenger C-PTIO or inducible nitric oxide synthase (iNOS) inhibitor 1400W prevented OGD-induced caveolin-1 translocation and claudin-5 degradation. Taken together, our data provide a novel mechanism underlying endothelial barrier disruption under prolonged ischemic conditions, in which NO promotes caveolin-1-mediated delivery of claudin-5 to the autophagosome for autophagy-lysosome-dependent degradation.

Cite

CITATION STYLE

APA

Liu, J., Weaver, J., Jin, X., Zhang, Y., Xu, J., Liu, K. J., … Liu, W. (2016). Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells. Molecular Neurobiology, 53(9), 5935–5947. https://doi.org/10.1007/s12035-015-9504-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free