Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

25Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microbial communities thrive in almost all habitats on earth. Within these communities, cells interact through the release and uptake of metabolites. These interactions can have synergistic or antagonistic effects on individual community members. The collective metabolic activity of microbial communities leads to changes in their local environment. As the environment changes over time, the nature of the interactions between cells can change. We currently lack understanding of how such dynamic feedbacks affect the growth dynamics of individual microbes and of the community as a whole. Here we study how interactions mediated by the exchange of metabolites through the environment change over time within a simple marine microbial community. We used a microfluidic-based approach that allows us to disentangle the effect cells have on their environment from how they respond to their environment. We found that the interactions between two species—a degrader of chitin and a cross-feeder that consumes metabolic by-products—changes dynamically over time as cells modify their environment. Cells initially interact positively and then start to compete at later stages of growth. Our results demonstrate that interactions between microorganisms are not static and depend on the state of the environment, emphasizing the importance of disentangling how modifications of the environment affects species interactions. This experimental approach can shed new light on how interspecies interactions scale up to community level processes in natural environments.

Cite

CITATION STYLE

APA

Daniels, M., van Vliet, S., & Ackermann, M. (2023). Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community. ISME Journal, 17(3), 406–416. https://doi.org/10.1038/s41396-022-01312-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free