The Impact of Carbonation Curing on the Fatigue Behavior of Polyvinyl Alcohol Engineered Cementitious Composites (PVA-ECC)

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Use of Engineered Cementitious Composites (ECC) has been proven to enhance structural fatigue resistance and reduce the use-phase emissions for transportation infrastructure. Carbonation curing offers an opportunity to reduce the embodied carbon of ECC via direct CO2 sequestration. In this study, the impact of carbonation curing on ECC's fatigue resistance was examined. ECC's CO2 uptake, static flexural behavior, flexural fatigue performance, and single fiber pull-out behavior were studied experimentally. Midspan deflection up to 3 million cycles under fatigue load, fatigue stress-life relationship, and failure mechanism for carbonation-cured and air-cured ECC were investigated. Carbonation curing was found to significantly improved the fatigue life of ECC and lowered the midspan deflection under the same stress. Further, CO2-cured ECC can achieve >20% CO2 uptake per cement mass after 24-hour carbonation curing. Carbonation curing increased ECC's flexural strength by 32% and promoted crack width control capability, with maximum post-fatigue crack width reduced from 148 μm to 76 μm. The positive impact of carbonation curing on the fatigue behavior of ECC simultaneously lowers the embodied and operational carbon of ECC structural members subjected to fatigue loading during service.

Cite

CITATION STYLE

APA

Hu, W. H., Zhang, D., Ellis, B. R., & Li, V. C. (2023). The Impact of Carbonation Curing on the Fatigue Behavior of Polyvinyl Alcohol Engineered Cementitious Composites (PVA-ECC). Journal of Advanced Concrete Technology, 21(4), 322–336. https://doi.org/10.3151/jact.21.322

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free