Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites

44Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Endoplasmic reticulum (ER) is characterized by interconnected tubules and sheets. Neuronal ER adopts specific morphology in axons, dendrites and soma. Here we study mechanisms underlying ER morphogenesis in a C. elegans sensory neuron PVD. In PVD soma and dendrite branch points, ER tubules connect to form networks. ER tubules fill primary dendrites but only extend to some but not all dendritic branches. We find that the Atlastin-1 ortholog, atln-1 is required for neuronal ER morphology. In atln-1 mutants with impaired GTPase activity, ER networks in soma and dendrite branch points are reduced and replaced by tubules, and ER tubules retracted from high-order dendritic branches, causing destabilized microtubule in these branches. The abnormal ER morphology likely causes defects in mitochondria fission at dendritic branch points. Mutant alleles of Atlastin-1 found in Hereditary Spastic Paraplegia (HSP) patients show similar ER phenotypes, suggesting that neuronal ER impairment contributes to HSP disease pathogenesis.

Cite

CITATION STYLE

APA

Liu, X., Guo, X., Niu, L., Li, X., Sun, F., Hu, J., … Shen, K. (2019). Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08478-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free